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Macrophages are a diverse population of phagocytic cells that reside in tissues throughout the body. At sites
of infection, macrophages encounter and engulf invading microbes. Accordingly, macrophages possess
specialized effector functions to kill or coordinate the elimination of their prey. Nevertheless, many intra-
cellular bacterial pathogens preferentially replicate inside macrophages. Here we consider explanations
for what we call ‘‘the macrophage paradox:’’ why do so many pathogenic bacteria replicate in the very cells
equipped to destroy them?We askwhether replication inmacrophages is an unavoidable fate that essentially
defines a key requirement to be a pathogen. Conversely, we consider whether fundamental aspects of
macrophage biology provide unique cellular or metabolic environments that pathogens can exploit. We
conclude that resolution of the macrophage paradox requires acknowledgment of the richness and
complexity of macrophages as a replicative niche.
Introduction: Macrophage Diversity
The term ‘‘macrophage’’ encompasses a large and heteroge-

neous group of tissue-resident phagocytes. In the brain, macro-

phage-like cells are called microglia; in the liver, they are called

Kupffer cells; in the skin, they are called Langerhans cells; in the

bone, they are called osteoclasts; and elsewhere, they are identi-

fied by the tissues they inhabit (e.g., peritoneal macrophages,

alveolar macrophages). The diverse anatomical localization of

macrophages ismirrored by their substantial phenotypic diversity

and plasticity, leading some to despair theremight indeed be ‘‘no

such thing as a ‘macrophage’ ’’ (Wynn et al., 2013).

Nevertheless, investigators have identified a core transcrip-

tional signature characteristic of macrophages from diverse

tissues (Gautier et al., 2012). This core signature includes tran-

scripts encoding the high-affinity Fcg receptor I and MerTK, a

receptor involved in uptake of apoptotic cells, consistent with

the notion that phagocytosis is a core function of macrophages.

In addition, macrophages are enriched for the expression of

sensor proteins, such as Toll-like receptors (TLRs), RIG-I-like re-

ceptors (RLRs), and the cytosolic nucleotide-binding domain

leucine-rich repeat-containing proteins (NLRs) (Takeuchi and

Akira, 2010). Upon engagement of these sensors, macrophages

rapidly differentiate into robust producers of diverse chemokines

and cytokines. Once activated, especially if by interferon-g

(IFN-g), macrophages exhibit a potent capacity for killing and de-

grading engulfed material. Macrophages can also be activated

through exposure to T helper 2 (Th2) cell-associated cytokines

such as interleukin-4 (IL-4) and IL-13 to become cells that are

instead optimized for resolution of inflammation and the coordi-

nation of tissue repair (Gordon, 2003; Martinez and Gordon,

2014).

The phenotypic diversity of macrophages might not be re-

flected by in vitro studies, which frequently rely on macrophages

differentiated from mouse bone marrow cells. Such bone-

marrow-derived macrophages are known to differ substantially

from bona fide tissue-resident macrophages in mice and hu-

mans (Epelman et al., 2014; Gautier et al., 2012; Murray et al.,
2014). In vivo, the population of macrophages present at a site

of bacterial infection can derive from several sources, including

self-perpetuating tissue-resident populations separated early

in development from yolk sack progenitors and infiltrating mono-

cytes differentiated from bone marrow hematopoietic stem cells

(Epelman et al., 2014; Geissmann et al., 2010; Hashimoto et al.,

2011; Yona et al., 2013).

Given that macrophages can encompass a wide variety of

cellular phenotypes, perhaps the bestway to generalize the func-

tion of macrophages is simply to state that they detect alter-

ations—stress, infection, injury—in the tissues they inhabit and

then initiate the cellular responses that return the tissues to ho-

meostasis (Medzhitov, 2008). In fact, given their diverse functions

as antigen presenters, cytokine producers, pathogen sensors,

tissue restorers, and microbe killers, perhaps the most salient

feature of macrophages is the extent to which they must satisfy

many competing demands. Macrophages are cells that initiate

inflammation and tissue destruction, but they must also initiate

tissue repair. Macrophages are typically long-lived in tissues,

yet as described below, infected macrophages are also able to

undergo an extremely rapid form of cell death called pyroptosis.

To foreshadow our conclusion, the competing demands faced

by macrophages imply the existence of evolutionary trade-offs

among these demands—trade-offs that we suggest microbes

can readily evolve to exploit.

Antimicrobial Effector Functions of Macrophages
Killing intracellular microbes is a key function of macrophages

(Flannagan et al., 2009). The antimicrobial effector functions of

macrophages can be divided generally into cell-autonomous

and non-cell-autonomous mechanisms, which cooperate in the

goal of tissue sterilization. Cell-autonomous defenses include

degradative enzymes such as proteases, nucleases, and lyso-

zyme, which digest microbes in mature acidified phagosomes.

In addition, the production of antimicrobial peptides (Nizet,

2006) and reactive oxygen or nitrogen species (Nathan and Cun-

ningham-Bussel, 2013) can kill or damage ingested microbes.
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Phagosomal bacteria, as well as bacteria that escape the phag-

osome, can also be targeted for elimination by selective auto-

phagy (Randow and Youle, 2014). It is important to emphasize

that although these cell-autonomous antimicrobial strategies

are readily employed by macrophages, they are certainly not

unique to macrophages. Thus, the inhospitality of macrophages

comparedwith other cell types is not absolute and is instead only

a matter of degree. Chemokines and cytokines produced by in-

fectedmacrophages can have non-cell-autonomous effects that

limit pathogen replication, via recruitment and activation of other

cells in the vicinity of an infected macrophage. Nitric oxide (NO)

can also act non-cell-autonomously (Olekhnovitch et al., 2014).

Another macrophage defense against intracellular pathogens

is a rapid form of cell death called pyroptosis (Bergsbaken

et al., 2009; Miao et al., 2010). Pyroptosis results from inflamma-

some-dependent activation of proinflammatory caspases such

as Caspase-1 and Caspase-11. Pyroptosis is partly a cell-auton-

omous and partly a non-cell-autonomous form of defense. Py-

roptosis is cell autonomous in the sense that it eliminates an

otherwise hospitable intracellular niche for pathogen replication.

However, the effectiveness of pyroptosis relies in part on a

network of extracellular defenses to ultimately eliminate patho-

gens. Indeed, inflammasome activation leads not only to pyrop-

tosis, but also to release of IL-1, an effective inducer of neutrophil

recruitment. Neutrophils are exceptionally microbicidal cells

containing high concentrations of degradative enzymes and anti-

microbial peptides. In this sense, pyroptosis and neutrophils are

collaborative, with the former ejecting pathogens from their pro-

tected intracellular niche, enabling the latter to close in for the kill.

Several macrophage antimicrobial defenses, particularly auto-

phagy and reactive nitrogen intermediates, are most strongly

induced in macrophages in the presence of IFN-g. IFN-g, and

to a lesser degree type I IFNs, are able to induce antimicrobial

GTPases such as p47 and GPB family members (Kim et al.,

2012). Robust stimulation by IFN-g almost invariably renders a

macrophage completely inhospitable to invading microbes due

to the combination of antimicrobial responses induced by this

cytokine (Schroder et al., 2004). However, given the potential

for collateral tissue damage, IFN-g must be tightly controlled to

maintain homeostasis and avoid autoimmunity (Pollard et al.,

2013). The need to regulate IFN-g probably limits the ability of

this pathway to fully control intracellular parasitism.

The Macrophage Paradox
Although we have emphasized the diversity of macrophages, it is

nevertheless clear that one of the specialized functions of macro-

phages is to orchestrate the elimination of microbes. Indeed,

macrophages are outranked as microbial assassins only perhaps

by neutrophils. Given this, we find it striking that so many intra-

cellular bacterial pathogens replicate in macrophages. Table 1

lists most of the commonly studied bacterial pathogens that are

traditionally classified as intracellular. We acknowledge that clas-

sification of a given pathogen as ‘‘intracellular’’ versus ‘‘extracel-

lular’’ is often controversial. Many bacterial pathogens—e.g.,

Pseudomonas aeruginosa, Yersinia spp., Bacillus anthracis, etc.

—spend a portion of their lives intracellularly, where they can sur-

vive and in some cases even replicate. In Table 1we focus primar-

ily on 17 well-studied bacterial species for which intracellular

replication (and not simply intracellular survival) is a predominant
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or critical component of the species’ pathogenic lifestyle. Of

these 17 species, at least 12 have been reported to have the ca-

pacity to replicate in macrophages. In most of these cases, mac-

rophages are a preferential host cell in vivo. These observations

lead to an apparent conundrum we refer to as ‘‘the macrophage

paradox’’ (Figure 1): why do so many bacterial pathogens repli-

cate in macrophages, given that macrophages are a cell type

that appears adapted to kill and eliminate bacteria?

Paradoxes generally arise from a seeming—but not a real or

actual—contradiction. Accordingly, we propose that there are

several non-mutually-exclusive explanations for why intracellular

bacteria frequently occupy macrophages as an intracellular

niche. In fact, we find the macrophage paradox intriguing in

part because of the number of distinct explanations that can

be proposed to resolve it (Figure 2). Our discussion focuses on

bacterial pathogens, because a similar propensity to replicate

in macrophages does not appear to exist among other classes

of pathogenic microbes. This bacteria-specific nature of the

macrophage paradox is discussed in more detail below.

Pathogen Adaptation to the Macrophage Niche
Before addressing various resolutions of the macrophage

paradox, it isworthnoting the remarkable number of different stra-

tegies pathogens have evolved in order to replicate in macro-

phages (Ray et al., 2009; Thi et al., 2012). Several pathogens

replicate within a variety of membrane-bound compartments,

typically derived from a phagosome, and frequently referred to

as pathogen-containing ‘‘vacuoles.’’ For example, Legionella

pneumophila resides in a phagosome that at least initially resists

acidification, whereas the closely related pathogen Coxiella bur-

netti appears to embrace an acidified phagosomal environment.

The intracellular replicative compartments ofSalmonella enterica,

Mycobacterium tuberculosis, Chlamydia pneumoniae, and Bru-

cella abortus can all be molecularly distinguished (Table 1). The

virulence factors pathogens utilize to create these intracellular

compartments are also varied. Pathogens alternately employ

type III, type IV, type VI, or type VII secretion systems to deliver

diverse, evolutionarily unrelated effectors that manipulate distinct

aspects of host cell biology (Table 1). Another major class of in-

tracellular pathogens elects to escape the membrane-bound

phagosome and instead replicate within the host cell cytosol.

Examples of such pathogens include Listeria monocytogenes,

Francisella tularensis, and Burkholderia pseudomallei. Escape to

the cytosol can be mediated by type III or type VI secretion sys-

tems or a variety of pore-forming toxins. Recent evidence sug-

gests that even pathogens considered vacuolar nevertheless

experience a degree of cytosolic exposure; conversely, ‘‘cyto-

solic’’ pathogens can also engage membranous compartments

suchasautophagosomes (Deretic, 2012;Lametal., 2012;Watson

et al., 2012). Thus, the intracellular habitat is complex and chal-

lenging forpathogens tonavigate.Yet thediversityofmechanisms

bacteria use to replicate inmacrophages suggests both that there

are many ways to penetrate the defenses of macrophages and

that many pathogens have found replication in macrophages to

be an evolutionary path of least (or at least low) resistance. After

considering the apparent ease with which pathogens can evolve

to replicate in macrophages, one might be tempted to conclude

that macrophages are not only a poor defense system, but are

even a particularly weak point of vulnerability.



Table 1. Replicative Niches of Intracellular Bacterial Pathogens

Name of Bacteria Human Disease

Replicates in

Macrophages?

Replicates in Other

Cell Type(s)? Intracellular Niche

Virulence

Factorsa

Anaplasma

phagocytophilum

granulocytic anaplasmosis;

tick-borne fever

mainly

granulocytes

granulocytes and endothelial cells membrane-bound

‘‘inclusion’’

T4SS

Bartonella

henselae

cat-scratch disease no? endothelial cells; erythrocytes in

cats

membrane-bound

vacuole

T4SS

Brucella abortus,

melitensis

brucellosis yes mainly in macrophages; also

placental trophoblasts

ER-like vacuole T4SS

Burkholderia

pseudomallei

melioidosis yes yes, including neutrophils cytosol T3SS; T6SS

Chlamydia

pneumoniae

pneumonia yes yes, but mainly macrophages membrane-bound

‘‘inclusion’’

T3SS

Chlamydia

trachomatis

trachoma, pelvic

inflammatory disease, etc.

poorly if at all epithelial cells membrane-bound

‘‘inclusion’’

T3SS

Coxiella burnetii Q fever yes yes, but mainly professional

phagocytes

phagolysosome-like

compartment

T4SS

Edwardsiella

tarda

rare; typically

gastroenteritis

yes yes, e.g., epithelial cells phagosome-derived

compartment

T3SS; T6SS

Ehrlichia

chaffeensis

monocytic ehrlichiosis yes mainly monocytes and

macrophages

early endosome-like

‘‘inclusion’’

T4SS

Francisella

tularensis

tularemia yes mainly macrophages? Also

epithelial and other cells

cytosol T6-like SS (FPI)

Legionella

pneumophila

Legionnaires’ disease yes mainly macrophages in

mammals, but also protozoa

ER-like vacuole T4SS

Listeria

monocytogenes

gastroenteritis; bacteremia yes CD8a dendritic cells cytosol Listeriolysin O,

ActA

Mycobacterium

tuberculosis

tuberculosis yes mainly macrophages Membrane bound

compartment

T7SS (ESX)

Rickettsiae Rocky Mountain spotted

fever, typhus, etc.

yes, but mainly

endothelial cells

primarily vascular endothelium cytosol various

Salmonella

enterica

typhoid fever,

gastroenteritis

yes dendritic cells, gut epithelial cells late endosomal

compartment

T3SS

Shigella flexneri diarrhea poorly if at all mainly intestinal epithelial cells cytosol T3SS
aAbbreviations are as follows: T3SS, type III secretion system; T4SS, type IV secretion system; T6SS, type VI secretion system; T7SS, type VII secre-

tion system.
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Is Replication in Macrophages Inevitable?
A trivial resolution of the macrophage paradox is the view that

pathogens donot ‘‘elect’’ to replicate inmacrophages, but instead

have little choice in the matter. Under this view, it is considered

inevitable that an invading pathogen will eventually find itself in

a macrophage. Thus, success as a pathogen requires, at least

in part, the ability to replicate inmacrophages. An extreme version

of this view holds that replication, or at least survival, in macro-

phages is an essential part of what it means to be a pathogen.

The idea that macrophages represent an inevitable destination

for pathogens has someappeal. The localization ofmacrophages

to virtually every tissue in the bodymeans that there is essentially

no site of infection in which an invading microbe would not

encounter a macrophage. In addition, macrophages are profes-

sional phagocytes, optimized for engulfment of particles, cellular

debris, apoptotic cells, and, of course, microbes. If a pathogen

does not evolve a specific mechanism to enter another cell

type or avoid phagocytosis, it is likely that the pathogen will

soon find itself engulfed by a macrophage. Pathogens that pref-

erentially invade nonmacrophage cells might nevertheless find
themselves in a macrophage if their primary host cell undergoes

apoptosis and subsequent phagocytosis by a nearby macro-

phage. Moreover, even themost ardent and devoted intracellular

pathogens experience at least part of their life cycle in the extra-

cellular space and are thus subject to uptake into macrophages.

Despite these considerations, we believe that the overall bal-

ance of evidence favors the view that replication in macrophages

is not simply inevitable, but instead most frequently reflects a

strategic ‘‘choice’’ made by pathogens that is more appealing

than other options. Indeed, if uptake by a macrophage is inevi-

table, then replication in neutrophils might be considered even

more so, especially if macrophage pyroptosis serves to transfer

pathogens frommacrophages to neutrophils. Neutrophils swarm

to sites of infection in large numbers and are highly phagocytic.

Yet few bacterial pathogens are known to replicate efficiently in

neutrophils. As discussed above, this is almost certainly because

neutrophils express abundant antibacterial enzymes that make

the neutrophil a particularly toxic environment for replication.

Indeed, neutropenic humans and mice are highly susceptible to

bacterial infections, illustrating the extent to which neutrophils
Immunity 41, November 20, 2014 ª2014 Elsevier Inc. 687



Figure 2. Resolutions of the Macrophage Paradox
Depicted are various factors that either favor (green) or disfavor (red) the
macrophage as a niche for bacterial replication. Although macrophages
encode numerous antimicrobial activities, the biology of macrophages is
highly constrained by the diverse functions they play in tissues. We propose
there may be many non-mutually-exclusive factors that, on balance, favor
preferential bacterial replication in the macrophage niche.

Figure 1. The Macrophage Paradox
Why do so many bacterial pathogens make macrophages, a menacing cell
type, their home? Illustration by Kyle Gabler.
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provide a major barrier to bacterial infection. Moreover, neutro-

phils are notoriously short-lived cells that do not provide a stable

replicative niche. Anaplasma phagocytophilum is a fascinating

and rare example of a pathogen with the dedicated capacity to

replicate in neutrophils (Rikihisa, 2010), but A. phagocytophilum

might be the exception that proves the rule. For most pathogens,

the replicative calculus favors macrophages as a kinder, gentler,

and longer-lived host cell, not simply an inevitable niche.

Underlining the optionality of the macrophage niche is the ex-

istence of several bacterial pathogens that do not replicate in

macrophages (Table 1). Shigella flexneri and Chlamydia tracho-

matis are examples of intracellular bacterial pathogens that are

largely able to avoid macrophages by replicating in epithelial

cells. Rickettsia species appear to prefer to replicate in vascular

endothelial cells (Mansueto et al., 2012). Numerous human bac-

terial pathogens—for example, Vibrio cholerae, Yersinia pestis,

Bacillus anthracis, and Staphylococcus aureus—primarily repli-

cate extracellularly and are able to resist phagocytosis by de-

ploying virulence factors such as capsules or toxins (Sarantis

and Grinstein, 2012). The variety of nonmacrophage replicative

niches and the seemingly unlimited inventiveness with which

bacterial pathogens are able to exploit these niches suggest

that there is nothing inevitable about replication inmacrophages.

The key question then becomes what might be attractive about

macrophages to a bacterial pathogen? If the choice of replicative

niche, whether phagosomal, cytosolic, or extracellular, involves

a set of trade-offs, what are the beneficial features of the macro-

phage niche that compensate for its more obviously detrimental

antimicrobial properties (Figure 2)?

Diverse Metabolic Niches for Bacteria?
The idea that a high degree of metabolic diversity and plasticity

makes macrophages attractive hosts for intracellular bacteria is

an interesting lens through which to consider the macrophage

paradox. The diversity of functions that macrophages perform

throughout the body is underwritten by their ability to rapidly

remodel their metabolism in response to specific environments
688 Immunity 41, November 20, 2014 ª2014 Elsevier Inc.
and stimuli. During infection, discrete metabolic programs are

engaged upon macrophage exposure to bacterial molecules

and other external cues such as cytokines and immune com-

plexes (Martinez and Gordon, 2014). To date, the study and un-

derstanding of macrophage metabolic plasticity during infection

or inflammation has focused mainly on how metabolic shifts are

tied mechanistically to specific macrophage immune functions

(Ganeshan and Chawla, 2014; Ghesquière et al., 2014). Here

we provide a general outline of these metabolic changes and

subsequently focus on the question of how intracellular bacteria

might take advantage of the diverse metabolic environments of

macrophages to suit their own replication requirements.

Macrophages have traditionally been divided into two main

subsets: ‘‘M1’’ or classically activated macrophages and ‘‘M2’’

or alternatively activatedmacrophages. Although this binary para-

digm is clearly an oversimplification, and in reality macrophages

encompass a spectrum of cellular activities and phenotypes

(Martinez and Gordon, 2014; Murray et al., 2014), contrasting

M1 and M2 activation states remains useful in our discussion of

macrophage metabolism. M1 macrophages arise in response to

IFN-g, bacterial molecules such as lipopolysaccharide (LPS), or

combinations of these stimuli, and are especially adept at bacte-

rial killing. To fuel their energetic demands, M1 macrophages in-

crease glucose uptake and glycolytic metabolism, which is tied

to increased production of reactive oxygen species and the

biosynthesis of cytokines (Ganeshan and Chawla, 2014). During

enhanced glycolysis, which involves the reduction of NAD+ to
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NADH, increased activity of lactate dehydrogenase converts py-

ruvate into lactate to regenerate NAD+ and prevents carbon

from glucose from entering the tricarboxylic acid (TCA) cycle

(Chiarugi et al., 2012; Ganeshan and Chawla, 2014). M1 macro-

phages generate TCA intermediates through increased uptake

of glutamine, which is processed to a-ketoglutarate via glutami-

nolysis (Tannahill et al., 2013). Production of intracellular nitric ox-

ide in LPS-stimulated cells have been shown to be toxic to mito-

chondria, resulting in further dependence on glycolysis in these

cells (Everts et al., 2012). However, mitochondria also play a

role in generating reactive oxygen species and in hosting the reac-

tions of the TCA cycle, key metabolic underpinnings of the antimi-

crobial activities of M1 macrophages. In sum, the central carbon

metabolism of M1 macrophages appears optimized for rapid

biosynthesis of macromolecules and resembles aerobic glycol-

ysis or the ‘‘Warburg effect’’ seen in some cancer cells

(Tannahill et al., 2013; Vander Heiden et al., 2009). However, un-

like the Warburg shift seen in tumor cells, the metabolic changes

observed in M1macrophages do not promote increased cell pro-

liferation, but are instead thought to be critical to support the

considerable biosynthetic demands encountered during the initi-

ation of the immune response.

By contrast, macrophages polarized along the M2 activation

spectrum are critical players in the Th2-cell-associated antipara-

site response as well as in the resolution of inflammation and the

promotion of tissue repair. Phenotypically distinct M2 macro-

phages arise in response to different stimuli, including Th2-cell-

associated cytokines IL-4 and IL-13, bacterial molecules such

as LPS in combination with immune complexes, and glucocorti-

coids, among others (Martinez and Gordon, 2014; Murray et al.,

2014). M2 macrophages upregulate oxidative mitochondrial

metabolic pathways (oxidative phosphorylation and fatty acid

oxidation) and initiate mitochondrial biogenesis. Upregulation

of fatty acid oxidation in IL-4- and/or IL-13-stimulated macro-

phages is dependent on STAT6 transcription factor signaling

and activation of peroxisome proliferator-activated receptors

(PPARs) PPARg and PPARd (Chawla, 2010). In comparison

with the dramatic and more short-lived metabolic surges

observed in M1 macrophages, the sustained oxidative meta-

bolism of M2 cells might enable the extended immune cam-

paigns necessary to eliminate parasites and the longer-term

repair of tissues damaged during infection and inflammation.

The overall view that emerges is that the macrophage polariza-

tion spectrum provides a corresponding variety of metabolic en-

vironments that metabolically diverse and adaptable microbes

could exploit.

The M2 Macrophage Niche
To date, the evidence for M2 macrophages being more meta-

bolically hospitable for intracellular parasitism has been mostly

indirect. In several cases, it appears that a chronic inability to

clear intracellular bacteria is associated with the elaboration of

M2 macrophages. Mycobacterium tuberculosis, Listeria mono-

cytogenes, and Francisella tularensis appear to induce M2

phenotypic characteristics in macrophages; however, the case

of F. tularensis might be complicated by distinct activities of

IL-4 during infection (Abdullah et al., 2012; Ketavarapu et al.,

2008; Mahajan et al., 2012; Rajaram et al., 2010; Rodriguez

et al., 2011). Although we still do not yet have a comprehensive
understanding of the phenomena described in these studies, it

appears that some intracellular bacteria can induce an M2 acti-

vation state in host macrophages and/or take up residence inM2

macrophages during infection.

The above studies invoke the reduced antimicrobial capacity

of M2 macrophages to explain increased bacterial replication

in these cells. However, two recent studies have identified the

altered metabolic state of M2 macrophages as a further factor

that supports the persistence of the intracellular pathogens

Salmonella enterica serovar Typhimurium and Brucella abortus

(Eisele et al., 2013; Xavier et al., 2013). In humans and mice,

infection with Salmonella is associated with a robust immune

response that requires the IL-12 and IFN-g signaling axis for bac-

terial clearance (Jouanguy et al., 1999; Pie et al., 1997). However,

some infected humans fail to completely clear the bacteria, re-

sulting in chronic infections and the risk of transmission (Gopi-

nath et al., 2012). Interestingly, Eisele et al. (2013) observed

that S. Typhimurium bacteria are predominantly found in splenic

M2 macrophages after oral infection. Their further experiments

revealed that S. Typhimurium preferentially replicates in M2

cells and that the ability of Salmonella to exploit this niche

required the host transcription factor PPARd. Pharmacological

or genetic inhibition of PPARd diminished the ability of Sal-

monella to replicate, an effect that was tied to the decreased

availability of intracellular glucose. The authors propose that

increased macrophage oxidative metabolism, which is favored

in M2 macrophages over the heavily glucose-fueled metabolism

of M1 cells, allows Salmonella to capitalize on an increased

amount of glucose for its own consumption. Furthermore, Eisele

et al. (2013) demonstrated that infection of macrophages with S.

Typhimurium induces PPARd expression in macrophages, indi-

cating that Salmonella might have the capacity to polarize its

host macrophages to an M2 activation state, from which the

bacteria can derive multilayered benefits.

Brucella abortus, another glucose-loving intracellular microbe,

appears to similarly exploit an abundance of glucose in M2mac-

rophages, driven by PPARg (Xavier et al., 2013). In this study,

B. abortus survival and replication was increased in M2 cells

andwas dependent on the ability of the bacteria to access higher

amounts of intracellular glucose measured in these macro-

phages. This study is in line with a previous investigation of the

cytokine profile of human patients with chronic brucellosis,

which linked prolonged disease duration with low IFN-g and

increased IL-13 (Rafiei et al., 2006). Notably, in contrast to Sal-

monella and the microbes discussed above, Brucella does not

induce an M2 activation state in macrophages infected in vitro.

In fact, Brucella induces an M1-type activation state in bone-

marrow-derived macrophages infected in vitro, associated with

upregulated glycolytic metabolism in thesemacrophages (Xavier

et al., 2013). This indicates that although some intracellular bac-

teria might directly influence the polarization and metabolism of

host cells to suit their metabolic needs, others, such as Brucella,

could exploit a pre-existing diversity of macrophages to find a

metabolically optimal niche for replication.

Although the existing literature supports the idea that some

intracellular bacteria appear to prefer the M2macrophage niche,

an intriguing possibility is that some intracellular bacteria could

exploit the potentially metabolite-rich environment within M1

macrophages, despite the enhanced antimicrobial activities of
Immunity 41, November 20, 2014 ª2014 Elsevier Inc. 689
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these cells. The existence of a spectrum of macrophage activa-

tion states in vivo might allow some intracellular bacteria to find

an optimal niche within a population of M1 cells, in which they

avoid being killed while still reaping the metabolic reward of

upregulated biosynthetic pathways in these cells. Increasingly

sophisticated profiling strategies that are able to measure

the contribution of host metabolites to intracellular bacterial

replication during infection (Schunder et al., 2014) will help to

further reveal the interplay betweenmacrophagemetabolic plas-

ticity and intracellular bacterial replication. In order to assess

whether metabolic remodeling provides an explanation for the

propensity of macrophages to serve as host cells for bacterial

pathogens, it will also be important to determine whether neutro-

phils or other cell types similarly remodel their metabolism in

ways that are of potential benefit to microbial pathogens.

In recent years, genetic perturbation of key pathways involved

in macrophage activation and metabolism has facilitated the

study ofmicewith severely attenuatedM1orM2 activation states

and deficiencies in entire macrophage subsets. For example,

PPAR-deficient macrophages lack the ability to remodel their

metabolism in response to M2 stimuli, and deficiencies in the

IRF4 transcription factor pathway result in the complete absence

of M2 macrophages arising from IL-4 stimulation (Chawla, 2010;

Date et al., 2014; Satoh et al., 2010). In the studies of Salmonella

and Brucella discussed above, PPAR-deficient mice were useful

in elucidating the role of M2 macrophage metabolism in Salmo-

nella and Brucella pathogenesis. It will be informative to make

further use of the expanding number of genetic models affecting

macrophage activation states to probe the extent to which intra-

cellular bacteria capitalize on macrophage metabolic plasticity

for optimal replication during infection in vivo.

Macrophages as an Amoebae-like Niche
Free-living single-celled phagocytic amoebae that feed on bac-

teria are ubiquitous in nature. These eukaryotic predators and

their bacterial prey have been locked in an evolutionary struggle

for millions if not billions of years (Hilbi et al., 2007). The funda-

mental cell biology of phagocytosis and phagosome maturation

is largely conserved between amoebae and macrophages. In

this light, an intriguing possibility is that, for some pathogens at

least, macrophages are a familiar niche, not simply a hostile one.

An appreciable number of bacterial species exhibit the capac-

ity to replicate or survive in amoebae (Greub and Raoult, 2004).

Although there is not an extensive body of literature character-

izing the explicit mechanistic interaction of most of these patho-

gens with amoebae, many species pathogenic to humans can

infect amoebae, includingCoxiella,Burkholderia, Francisella, Lis-

teria, Salmonella,Mycobacteria, and Shigella (Brandl et al., 2005;

Greub and Raoult, 2004; Huws et al., 2008; La Scola and Raoult,

2001; Saeed et al., 2009; Schuppler, 2014). Legionella pneumo-

phila provides one particularly well-characterized example of

how amoebae might provide a solution to the macrophage

paradox. In humans, Legionella preferentially replicates in alve-

olar macrophages, but the natural host cells for Legionella are

diverse freshwater amoebae (Fields, 1996). Legionella is consid-

ered an ‘‘accidental pathogen’’ of humans, because it is able to

infect macrophages and cause severe pneumonia but has not

evolved the ability to be transmitted between mammalian hosts.

The advent of indoor water heating and cooling systems, in exis-
690 Immunity 41, November 20, 2014 ª2014 Elsevier Inc.
tence only for the most recent sliver of Legionella’s evolutionary

history, has brought amoebae harboring Legionella into contact

with human alveolar macrophages via inhaled aerosolized water

droplets. Because the human host is a dead end for the bacteria,

it is not likely that coevolution with mammalian macrophages in-

fluences the pathogenicity or virulence mechanisms of Legion-

ella in the wild. Instead, adaptations that Legionella evolved to

survive in a diverse group of free-living protozoan species have

evidently granted it the ability to survive in macrophages as

well. These adaptations include an arsenal of >300 secreted

effector proteins that Legionella delivers to the host cytosol via

a type IV secretion system (Hubber and Roy, 2010). Legionella

encodes multiple effectors with overlapping and redundant ac-

tivities, presumably equipping it to cope with the diversity of its

amoebal hosts (O’Connor et al., 2011). Macrophages, then, are

just another environmental phagocyte from the perspective of

Legionella, whose effector arsenal is sufficiently broad to permit

parasitization of macrophages. Indeed, where it has been

dissected, the host mechanisms targeted and/or exploited by

Legionella in amoebae and macrophages tend to be identical

(Molmeret et al., 2005; Segal and Shuman, 1999).

These observations point to a model in which some intracel-

lular bacteria, evolved to resist predation by free-living amoebae,

are able to parasitize human cells when circumstances such as

new human technologies inadvertently bring amoebae, their

intracellular bacterial cargo, and humans into proximity. Highly

conserved host targets of bacterial virulence factors and func-

tional similarity between free-living amoebae and macrophages

(i.e., a high phagocytic capacity, conserved endocytic andmeta-

bolic machinery) might allow intracellular bacteria to transition

from protozoan to mammalian host cells with relative ease. In

fact, Legionella passaged for hundreds of generations in macro-

phages not only increased their ability to replicate in macro-

phages, but lost the ability to efficiently replicate in cultured

amoebae, changes tied to flagellar regulation and the advent

of lysine auxotrophy (Ensminger et al., 2012). This experiment

provides tantalizing evidence for the notion that bacteria with

the ability to infect amoebae can adapt to become mammalian

pathogens by taking advantage of their ability to replicate in

macrophages. In this light, the seemingly high number of intra-

cellular bacteria that ‘‘prefer’’ to replicate in macrophages might

in fact reflect the role of the macrophage as a ‘‘gateway’’

mammalian cell for bacteria with preexisting tools for replication

in amoebae.

Other Resolutions to the Macrophage Paradox
We favor the view that there are probably many mutually nonex-

clusive reasons to explain why intracellular bacterial pathogens

would favor the macrophage niche. Moreover, it is likely that

the reasons are not necessarily the same for all pathogens.

One intriguing idea that might apply to certain pathogens is

that parasitization of macrophages provides a mechanism for a

pathogen to spread to systemic sites within its host (Vazquez-

Torres et al., 1999). However, the extent to which infected

macrophages circulate among tissues is not well established.

Moreover, for a pathogen such as Salmonella, which is typically

transmitted via the fecal-oral route, the benefit of spreading deep

into systemic tissue is unclear, if indeed it is the intestinal luminal

bacteria that are ultimately transmitted to the next host. One
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attractive idea is that infected macrophages might serve as an

alternative reservoir of bacteria from which the gut lumen can

be reseeded. A related idea is that infection of macrophages

might induce an inflammatory environment that benefits the

pathogen indirectly. For example, intestinal luminal S. Typhimu-

rium are able to compete metabolically with the host microbiota

by feeding off electron acceptors, such as tetrathionate, that are

produced as a consequence of gut inflammation (Winter et al.,

2010). Salmonella bacteria that infect lamina propria macro-

phagesmight themselves be killed, butmight nevertheless assist

transmission of their luminal brethren by helping to provoke a

beneficial inflammatory state.

Interaction of Other Pathogenic Microbes with
Macrophages
The apparent preference of bacteria for replication in macro-

phages can be contrasted with the cellular niches preferred by

viruses, fungi, and protozoan parasites. Although a number of

microbes in each of these categories do infect macrophages,

there does not appear to be a similar propensity for these organ-

isms to single out macrophages above others as host cells

(Mercer and Greber, 2013; Sibley, 2011). The reasons for the

distinct cellular preferences of bacteria and other pathogens

are not clear. As discussed above, macrophages are able to

generate a high amount of type I IFNs, which are almost univer-

sally effective against viruses, but exhibit much more variable ef-

fects on bacteria (Monroe et al., 2010). Viruses also rely on host

translation for their replication, which makes them particularly

susceptible to host-mediated inhibition of host protein synthesis

(Mohr and Sonenberg, 2012). Conversely, because pathogenic

intracellular bacteria possess their own biosynthetic machinery,

theymight bemore interested in accessing stores of hostmetab-

olites and less concerned about protein synthesis inhibition.

Some bacteria even possess their own mechanisms for the inhi-

bition of protein synthesis, as in the case of Legionella, Shigella,

and Pseudomonas (Belyi et al., 2008; Sandvig and van Deurs,

1996; Wilson and Collier, 1992). Additionally, macrophages

express the deoxynucleotide triphosphate (dNTP) hydrolase

SAMHD1, which restricts retrovirus pathogenesis through

limiting the availability of cytosolic dNTPs for viral genome repli-

cation (Ayinde et al., 2012). As discussed previously, given the

extraordinary adaptability of pathogens, the presence of multiple

defense strategies does not per se render a cell inhospitable to a

particular class of organism, and indeed, many viruses have

evolved mechanisms to subvert the cell-autonomous and non-

cell-autonomous immune defenses of macrophages and other

host cells. However, as immune sentinels, macrophages’ tool

kit might be better optimized to combat viruses than intracellular

bacteria.

The pathogenic fungi Histoplasma capsulatum and Crypto-

coccus neoformans have the ability to replicate in the phago-

somes of phagocytic cells, including macrophages; however,

this trait does not appear to be common among fungal patho-

gens (Feldmesser et al., 2001). Although some protozoan para-

sites, including Toxoplasma gondii, Trypanosoma cruzi, and

Leishmania spp. (Bogdan and Röllinghoff, 1999), take up resi-

dence and even replicate within macrophages, overall it appears

that parasite intracellular replication in macrophages is rare (Sib-

ley, 2011). Of the species that do replicate in macrophages, only
Leishmania appears to be specialized for replication in macro-

phages above other cell types (Stafford et al., 2002).

In sum, within the spectrum of commonly studied microbial

pathogens, it appears that intracellular bacteria might be partic-

ularly poised to exploit macrophages for replication. Given the

evolutionary pressures imposed upon macrophages as first re-

sponders to infection by highly diverse pathogens, it is perhaps

not surprising that they are rendered differentially susceptible to

viral, fungal, protozoan, and bacterial pathogens. It should be

noted that our knowledge of the preferred mammalian cell types

for many pathogens, including bacteria, has been greatly influ-

enced by studies using in-vitro-derived cells or primary cells

cultured ex vivo. Data for the preferred host cells in vivo remain

lacking for many pathogens. Live tracking of microbes and host

cells in vivo enabled by advances in cell labeling and detection

technologies will provide definitive evidence of pathogens’

biases toward subsets of macrophages and other specific

cellular niches.

Conclusion:WhyDoes theMacrophageParadoxMatter?
We have noted the surprising extent to which intracellular bacte-

rial pathogens exploit macrophages as an intracellular niche

despite macrophages’ well-characterized antimicrobial activ-

ities. We have also speculated that the special ‘‘paradoxical’’

relationship between bacteria and macrophages probably arises

frommany facets of the complex biology of macrophages. How-

ever, we have not yetmade an argument for why consideration of

themacrophage paradox is important. In fact, we believe that the

macrophage paradox is central to understanding the immu-

nology and microbiology of intracellular bacterial pathogens.

The macrophage paradox forces one to consider and weigh

the constraints faced by intracellular pathogens and their host

cells. Without addressing the macrophage paradox, it is not

possible to really understand why so many bacterial pathogens

devote considerable genetic and energetic resources to produce

dedicated secretion systems and other virulence factors that

(largely) serve to suppress or escape macrophage defenses.

From the host’s perspective, once faced with the macrophage

paradox, it is no longer possible to think of macrophages as sim-

ple antimicrobial effector cells. Instead, macrophages must be

envisioned as active and highly environmentally responsive cells

that exhibit—and therefore provide to pathogens—a diversity of

metabolic and cellular states. Understanding both the appeal

and the limitations of the macrophage niche helps us understand

the challenges and opportunities faced by newly emerging path-

ogens as they try to exploit macrophages, as so many estab-

lished pathogens have already done before them. Ultimately,

our hope is that articulation of the macrophage paradox will

lead to a better understanding of what makes macrophages

attractive or vulnerable hosts for bacterial pathogens, which

might then facilitate the design of host-directed therapeutic inter-

ventions that limit macrophages’ attractiveness or vulnerability.
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Schildberg, F.A., Riethausen, K., Flossdorf, J., Krebs, W., et al. (2012). Lack of
PPARg in myeloid cells confers resistance to Listeria monocytogenes infec-
tion. PLoS ONE 7, e37349.

Ayinde, D., Casartelli, N., and Schwartz, O. (2012). Restricting HIV the
SAMHD1 way: through nucleotide starvation. Nat. Rev. Microbiol. 10,
675–680.

Belyi, Y., Tabakova, I., Stahl, M., and Aktories, K. (2008). Lgt: a family of cyto-
toxic glucosyltransferases produced by Legionella pneumophila. J. Bacteriol.
190, 3026–3035.

Bergsbaken, T., Fink, S.L., and Cookson, B.T. (2009). Pyroptosis: host cell
death and inflammation. Nat. Rev. Microbiol. 7, 99–109.
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Jouanguy, E., Döffinger, R., Dupuis, S., Pallier, A., Altare, F., and Casanova,
J.L. (1999). IL-12 and IFN-gamma in host defense against mycobacteria and
salmonella in mice and men. Curr. Opin. Immunol. 11, 346–351.

Ketavarapu, J.M., Rodriguez, A.R., Yu, J.J., Cong, Y., Murthy, A.K., For-
sthuber, T.G., Guentzel, M.N., Klose, K.E., Berton, M.T., and Arulanandam,
B.P. (2008). Mast cells inhibit intramacrophage Francisella tularensis replica-
tion via contact and secreted products including IL-4. Proc. Natl. Acad. Sci.
USA 105, 9313–9318.

Kim, B.H., Shenoy, A.R., Kumar, P., Bradfield, C.J., and MacMicking, J.D.
(2012). IFN-inducible GTPases in host cell defense. Cell Host Microbe 12,
432–444.

La Scola, B., and Raoult, D. (2001). Survival of Coxiella burnetii within free-
living amoeba Acanthamoeba castellanii. Clin. Microbiol. Infect. 7, 75–79.

Lam, G.Y., Czuczman, M.A., Higgins, D.E., and Brumell, J.H. (2012). Interac-
tions of Listeria monocytogenes with the autophagy system of host cells.
Adv. Immunol. 113, 7–18.

Mahajan, S., Dkhar, H.K., Chandra, V., Dave, S., Nanduri, R., Janmeja, A.K.,
Agrewala, J.N., and Gupta, P. (2012). Mycobacterium tuberculosis modulates
macrophage lipid-sensing nuclear receptors PPARg and TR4 for survival.
J. Immunol. 188, 5593–5603.

Mansueto, P., Vitale, G., Cascio, A., Seidita, A., Pepe, I., Carroccio, A., di Rosa,
S., Rini, G.B., Cillari, E., andWalker, D.H. (2012). New insight into immunity and
immunopathology of Rickettsial diseases. Clin. Dev. Immunol. 2012, 967852.

Martinez, F.O., and Gordon, S. (2014). The M1 and M2 paradigm of macro-
phage activation: time for reassessment. F1000Prime Rep. 6, 13.

Medzhitov, R. (2008). Origin and physiological roles of inflammation. Nature
454, 428–435.

Mercer, J., andGreber, U.F. (2013). Virus interactionswith endocytic pathways
in macrophages and dendritic cells. Trends Microbiol. 21, 380–388.

Miao, E.A., Leaf, I.A., Treuting, P.M., Mao, D.P., Dors, M., Sarkar, A., Warren,
S.E., Wewers, M.D., and Aderem, A. (2010). Caspase-1-induced pyroptosis is
an innate immune effector mechanism against intracellular bacteria. Nat. Im-
munol. 11, 1136–1142.

Mohr, I., and Sonenberg, N. (2012). Host translation at the nexus of infection
and immunity. Cell Host Microbe 12, 470–483.

Molmeret, M., Horn, M., Wagner, M., Santic, M., and Abu Kwaik, Y. (2005).
Amoebae as training grounds for intracellular bacterial pathogens. Appl. Envi-
ron. Microbiol. 71, 20–28.

Monroe, K.M., McWhirter, S.M., and Vance, R.E. (2010). Induction of type I in-
terferons by bacteria. Cell. Microbiol. 12, 881–890.

Murray, P.J., Allen, J.E., Biswas, S.K., Fisher, E.A., Gilroy, D.W., Goerdt, S.,
Gordon, S., Hamilton, J.A., Ivashkiv, L.B., Lawrence, T., et al. (2014). Macro-
phage activation and polarization: nomenclature and experimental guidelines.
Immunity 41, 14–20.



Immunity

Perspective
Nathan, C., and Cunningham-Bussel, A. (2013). Beyond oxidative stress: an
immunologist’s guide to reactive oxygen species. Nat. Rev. Immunol. 13,
349–361.

Nizet, V. (2006). Antimicrobial peptide resistance mechanisms of human bac-
terial pathogens. Curr. Issues Mol. Biol. 8, 11–26.

O’Connor, T.J., Adepoju, Y., Boyd, D., and Isberg, R.R. (2011). Minimization of
the Legionella pneumophila genome reveals chromosomal regions involved in
host range expansion. Proc. Natl. Acad. Sci. USA 108, 14733–14740.

Olekhnovitch, R., Ryffel, B., Müller, A.J., and Bousso, P. (2014). Collective ni-
tric oxide production provides tissue-wide immunity during Leishmania infec-
tion. J. Clin. Invest. 124, 1711–1722.

Pie, S., Truffa-Bachi, P., Pla, M., and Nauciel, C. (1997). Th1 response in Sal-
monella typhimurium-infected mice with a high or low rate of bacterial clear-
ance. Infect. Immun. 65, 4509–4514.

Pollard, K.M., Cauvi, D.M., Toomey, C.B., Morris, K.V., and Kono, D.H. (2013).
Interferon-g and systemic autoimmunity. Discov. Med. 16, 123–131.

Rafiei, A., Ardestani, S.K., Kariminia, A., Keyhani, A., Mohraz, M., and Amir-
khani, A. (2006). Dominant Th1 cytokine production in early onset of human
brucellosis followed by switching towards Th2 along prolongation of disease.
J. Infect. 53, 315–324.

Rajaram, M.V., Brooks, M.N., Morris, J.D., Torrelles, J.B., Azad, A.K., and
Schlesinger, L.S. (2010).Mycobacterium tuberculosis activates humanmacro-
phage peroxisome proliferator-activated receptor gamma linking mannose re-
ceptor recognition to regulation of immune responses. J. Immunol. 185,
929–942.

Randow, F., and Youle, R.J. (2014). Self and nonself: how autophagy targets
mitochondria and bacteria. Cell Host Microbe 15, 403–411.

Ray, K.,Marteyn, B., Sansonetti, P.J., and Tang, C.M. (2009). Life on the inside:
the intracellular lifestyle of cytosolic bacteria. Nat. Rev. Microbiol. 7, 333–340.

Rikihisa, Y. (2010). Anaplasma phagocytophilum and Ehrlichia chaffeensis:
subversive manipulators of host cells. Nat. Rev. Microbiol. 8, 328–339.

Rodriguez, A.R., Yu, J.J., Murthy, A.K., Guentzel, M.N., Klose, K.E., For-
sthuber, T.G., Chambers, J.P., Berton, M.T., and Arulanandam, B.P. (2011).
Mast cell/IL-4 control of Francisella tularensis replication and host cell death
is associated with increased ATP production and phagosomal acidification.
Mucosal Immunol. 4, 217–226.

Saeed, A., Abd, H., Edvinsson, B., and Sandström, G. (2009). Acanthamoeba
castellanii an environmental host for Shigella dysenteriae and Shigella sonnei.
Arch. Microbiol. 191, 83–88.

Sandvig, K., and van Deurs, B. (1996). Endocytosis, intracellular transport, and
cytotoxic action of Shiga toxin and ricin. Physiol. Rev. 76, 949–966.

Sarantis, H., andGrinstein, S. (2012). Subversion of phagocytosis for pathogen
survival. Cell Host Microbe 12, 419–431.

Satoh, T., Takeuchi, O., Vandenbon, A., Yasuda, K., Tanaka, Y., Kumagai, Y.,
Miyake, T., Matsushita, K., Okazaki, T., Saitoh, T., et al. (2010). The Jmjd3-Irf4
axis regulates M2 macrophage polarization and host responses against hel-
minth infection. Nat. Immunol. 11, 936–944.

Schroder, K., Hertzog, P.J., Ravasi, T., and Hume, D.A. (2004). Interferon-
gamma: an overview of signals, mechanisms and functions. J. Leukoc. Biol.
75, 163–189.
Schunder, E., Gillmaier, N., Kutzner, E., Herrmann, V., Lautner, M., Heuner, K.,
and Eisenreich, W. (2014). Amino acid uptake and metabolism of Legionella
pneumophila hosted by Acanthamoeba castellanii. J. Biol. Chem. 289,
21040–21054.

Schuppler, M. (2014). How the interaction of Listeria monocytogenes and
Acanthamoeba spp. affects growth and distribution of the food borne path-
ogen. Appl. Microbiol. Biotechnol. 98, 2907–2916.

Segal, G., and Shuman, H.A. (1999). Legionella pneumophila utilizes the same
genes to multiply within Acanthamoeba castellanii and human macrophages.
Infect. Immun. 67, 2117–2124.

Sibley, L.D. (2011). Invasion and intracellular survival by protozoan parasites.
Immunol. Rev. 240, 72–91.

Stafford, J.L., Neumann, N.F., and Belosevic, M. (2002). Macrophage-medi-
ated innate host defense against protozoan parasites. Crit. Rev. Microbiol.
28, 187–248.

Takeuchi, O., and Akira, S. (2010). Pattern recognition receptors and inflam-
mation. Cell 140, 805–820.

Tannahill, G.M., Curtis, A.M., Adamik, J., Palsson-McDermott, E.M., McGet-
trick, A.F., Goel, G., Frezza, C., Bernard, N.J., Kelly, B., Foley, N.H., et al.
(2013). Succinate is an inflammatory signal that induces IL-1b through HIF-
1a. Nature 496, 238–242.

Thi, E.P., Lambertz, U., and Reiner, N.E. (2012). Sleeping with the enemy: how
intracellular pathogens cope with a macrophage lifestyle. PLoS Pathog. 8,
e1002551.

Vander Heiden, M.G., Cantley, L.C., and Thompson, C.B. (2009). Understand-
ing the Warburg effect: the metabolic requirements of cell proliferation. Sci-
ence 324, 1029–1033.

Vazquez-Torres, A., Jones-Carson, J., Bäumler, A.J., Falkow, S., Valdivia, R.,
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